A Virtual Look at EpsteinBarr Virus Infection

1 post / 0 new
Tony Rook
Tony Rook's picture
A Virtual Look at EpsteinBarr Virus Infection

Below is a link to a very interesting paper which details the infection of the Epstein-Barr Virus (EBV) within a human host by developing and using Pathogen Simulator or PathSim, an agent-based computer model/simulation. The online article at PLOS contains some very interesting video files demonstrating the considerable simulation power of PathSim. I would encourage anyone interesting in human pathogenesis to review this study and simulation program.

Karen A. Duca, Michael Shapiro, Edgar Delgado-Eckert, Vey Hadinoto, Abdul S. Jarrah, Reinhard Laubenbacher, Kichol Lee, Katherine Luzuriaga, Nicholas F. Polys, David A. Thorley-Lawson. A Virtual Look at EpsteinBarr Virus Infection: Biological Interpretations. PLoS Pathog 3(10): e137 doi:10.1371/journal.ppat.0030137


The possibility of using computer simulation and mathematical modeling to gain insight into biological and other complex systems is receiving increased attention. However, it is as yet unclear to what extent these techniques will provide useful biological insights or even what the best approach is. EpsteinBarr virus (EBV) provides a good candidate to address these issues. It persistently infects most humans and is associated with several important diseases. In addition, a detailed biological model has been developed that provides an intricate understanding of EBV infection in the naturally infected human host and accounts for most of the virus' diverse and peculiar properties. We have developed an agent-based computer model/simulation (PathSim, Pathogen Simulation) of this biological model. The simulation is performed on a virtual grid that represents the anatomy of the tonsils of the nasopharyngeal cavity (Waldeyer ring) and the peripheral circulationthe sites of EBV infection and persistence. The simulation is presented via a user friendly visual interface and reproduces quantitative and qualitative aspects of acute and persistent EBV infection. The simulation also had predictive power in validation experiments involving certain aspects of viral infection dynamics. Moreover, it allows us to identify switch points in the infection process that direct the disease course towards the end points of persistence, clearance, or death. Lastly, we were able to identify parameter sets that reproduced aspects of EBV-associated diseases. These investigations indicate that such simulations, combined with laboratory and clinical studies and animal models, will provide a powerful approach to investigating and controlling EBV infection, including the design of targeted anti-viral therapies.